TW: The more I read and hear about the viability of alternative energies the less confident I am in them. Correspondingly I am very much convinced the skyrocketing prices for current favored energy sources (i.e. oil, nat gas, coal) we saw in 2006-2008 will return with a vengeance when demand resumes (and if it does not then well that is a much different and worse problem).
When one peels the onion on the various alternatives they typically do not stack up well technically. Overlay the technical issues with the entrenched interests in fossil fuels and the equation becomes exceedingly tricky. And understand while I believe global warming is real, I believe scarcity of resources will trump warming to the extent that preventing economic trauma will be the focus rather than reducing carbon emissions. My concern is not carbon as much as it is having fossil fuels with economically and politically viable means.
The piece below looks at the issue from the perspective of carbon reduction but the issues raised are relevant in terms of finding economically viable alternatives to what will become very expensive fossil fuels.
From Begley at Newsweek:
"...As the world gets closer to a consensus that we need to slash CO2 emissions, a debate is raging over whether we can achieve the required cuts by scaling up existing technologies or whether we need "transformational" scientific breakthroughs.
...the Department of Energy...concluded that we need breakthroughs in physics and chemistry that are "beyond our present reach" to, for instance, triple the efficiency of solar panels; DOE secretary Steven Chu has said we need Nobel caliber breakthroughs.
That is also the view of energy chemist Nate Lewis of the California Institute of Technology. "It's not true that all the technologies are available and we just need the political will to deploy them," he says. "My concern, and that of most scientists working on energy, is that we are not anywhere close to where we need to be. We are too focused on cutting emissions 20 percent by 2020—but you can always shave 20 percent off" through, say, efficiency and conservation. By focusing on easy, near-term cuts, we may miss the boat on what's needed by 2050, when CO2 emissions will have to be 80 percent below today's to keep atmospheric levels no higher than 450 parts per million.
...Lewis's numbers show the enormous challenge we face. The world used 14 trillion watts (14 terawatts) of power in 2006. Assuming minimal population growth (to 9 billion people), slow economic growth (1.6 percent a year, practically recession level) and—this is key—unprecedented energy efficiency (improvements of 500 percent relative to current U.S. levels, worldwide), it will use 28 terawatts in 2050. (In a business-as-usual scenario, we would need 45 terawatts.)
Simple physics shows that in order to keep CO2 to 450 ppm, 26.5 of those terawatts must be zero-carbon. That's a lot of solar, wind, hydro, biofuels and nuclear, especially since renewables kicked in a measly 0.2 terawatts in 2006 and nuclear provided 0.9 terawatts. Are you a fan of nuclear? To get 10 terawatts, less than half of what we'll need in 2050, Lewis calculates, we'd have to build 10,000 reactors, or one every other day starting now. Do you like wind? If you use every single breeze that blows on land, you'll get 10 or 15 terawatts. Since it's impossible to capture all the wind, a more realistic number is 3 terawatts, or 1 million state-of-the art turbines, and even that requires storing the energy—something we don't know how to do—for when the wind doesn't blow. Solar? To get 10 terawatts by 2050, Lewis calculates, we'd need to cover 1 million roofs with panels every day from now until then. "It would take an army," he says. Obama promised green jobs, but still.
Hence the need for Nobel-caliber discoveries. Lewis's research is on artificial photosynthesis, in which a material (to be determined, thus the research) absorbs sunlight and water and produces hydrogen for fuel but zero CO2. "If we could figure out how to make and deploy such a system, the capacity would be essentially infinite," he says. Another need is for transmission lines that don't leak 80 percent of what they carry, says physicist David Pines of the University of California, Davis. "The technology is not remotely there," he says. "We're going to have to discover yet another family of superconductors [which do not lose current] that are easily made into wires" and that work at the temperature of liquid nitrogen, a coolant.
Prospects stink for discovering what we need to discover, especially when you consider that to get the right energy mix in 2050, given how long it takes to capitalize and deploy new technologies, we need breakthroughs soon, not in 2049. Yet despite the pressing need, DOE spent a pitiful $2 billion to $3 billion on nondefense, basic energy R&D last year, less than one fifth what we spent in the 1970s and 1980s. A new report from the Brookings Institution calls for $20 billion to $30 billion a year and—to improve the odds of success—revamping the nation's energy labs, which today are "too far removed from the marketplace to produce the kind of transformational research we need for new energy technologies," says Brookings's Mark Muro. The clock is ticking."
http://www.newsweek.com/id/189293
No comments:
Post a Comment